metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊6F5, C20.8C42, C4⋊F5⋊4C4, (C4×C20)⋊7C4, C4.F5⋊4C4, C4.1(C4×F5), D5.1C4≀C2, (C4×D5).86D4, C4.25(C4⋊F5), C20.25(C4⋊C4), (C4×D5).28Q8, C5⋊1(C42⋊6C4), (C4×Dic5)⋊24C4, D10.19(C4⋊C4), D5⋊M4(2).7C2, (D5×C42).23C2, Dic5.21(C4⋊C4), (C2×Dic5).253D4, (C22×D5).140D4, D10.28(C22⋊C4), C2.3(D10.3Q8), C22.12(C22⋊F5), C10.1(C2.C42), Dic5.28(C22⋊C4), D10.C23.7C2, (C4×D5).61(C2×C4), (C2×C4).115(C2×F5), (C2×C20).136(C2×C4), (C2×C4×D5).401C22, (C2×C10).12(C22⋊C4), SmallGroup(320,200)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊6F5
G = < a,b,c,d | a4=b4=c5=d4=1, dad-1=ab=ba, ac=ca, bc=cb, dbd-1=b-1, dcd-1=c3 >
Subgroups: 450 in 110 conjugacy classes, 36 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C2×C42, C42⋊C2, C2×M4(2), C5⋊C8, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5, C22×D5, C42⋊6C4, C4×Dic5, C4×Dic5, C4×C20, D5⋊C8, C4.F5, C4×F5, C4⋊F5, C22.F5, C22⋊F5, C2×C4×D5, C2×C4×D5, D5×C42, D5⋊M4(2), D10.C23, C42⋊6F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, F5, C2.C42, C4≀C2, C2×F5, C42⋊6C4, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, C42⋊6F5
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23)(2 25 5 21)(3 22 4 24)(6 28)(7 30 10 26)(8 27 9 29)(11 33)(12 35 15 31)(13 32 14 34)(16 38)(17 40 20 36)(18 37 19 39)
G:=sub<Sym(40)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,33)(12,35,15,31)(13,32,14,34)(16,38)(17,40,20,36)(18,37,19,39)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,33)(12,35,15,31)(13,32,14,34)(16,38)(17,40,20,36)(18,37,19,39) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23),(2,25,5,21),(3,22,4,24),(6,28),(7,30,10,26),(8,27,9,29),(11,33),(12,35,15,31),(13,32,14,34),(16,38),(17,40,20,36),(18,37,19,39)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | ··· | 4N | 4O | 4P | 4Q | 4R | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | ··· | 2 | 5 | 5 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | Q8 | D4 | D4 | C4≀C2 | F5 | C2×F5 | C4×F5 | C4⋊F5 | C22⋊F5 | C42⋊6F5 |
kernel | C42⋊6F5 | D5×C42 | D5⋊M4(2) | D10.C23 | C4×Dic5 | C4×C20 | C4.F5 | C4⋊F5 | C4×D5 | C4×D5 | C2×Dic5 | C22×D5 | D5 | C42 | C2×C4 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 2 | 2 | 8 |
Matrix representation of C42⋊6F5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 7 |
0 | 0 | 0 | 0 | 34 | 40 |
0 | 9 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,7,34,0,0,0,0,7,40],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;
C42⋊6F5 in GAP, Magma, Sage, TeX
C_4^2\rtimes_6F_5
% in TeX
G:=Group("C4^2:6F5");
// GroupNames label
G:=SmallGroup(320,200);
// by ID
G=gap.SmallGroup(320,200);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,1123,1684,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations